

 Navigation

 	
 index

 	
 modules |

 	vcversioner 1.13.0.0 documentation

vcversioner

The code is available on github: https://github.com/habnabit/vcversioner

Elevator pitch [http://en.wikipedia.org/wiki/Elevator_pitch]: you can write a setup.py with no version information
specified, and vcversioner will find a recent, properly-formatted git tag and
extract a version from it.

It’s much more convenient to be able to use your version control system’s
tagging mechanism to derive a version number than to have to duplicate that
information all over the place. I eventually ended up copy-pasting the same
code into a couple different setup.py files just to avoid duplicating
version information. But, copy-pasting is dumb and unit testing setup.py
files is hard. This code got factored out into vcversioner.

Basic usage

vcversioner installs itself as a setuptools hook, which makes its use
exceedingly simple:

from setuptools import setup

setup(
 # [...]
 setup_requires=['vcversioner'],
 vcversioner={},
)

The presence of a vcversioner argument automagically activates vcversioner
and updates the project’s version. The parameter to the vcversioner
argument can also be a dict of keyword arguments which find_version()
will be called with.

To allow tarballs to be distributed without requiring a .git directory,
vcversioner will also write out a file named (by default) version.txt.
Then, if there is no git or git is unable to find any version information,
vcversioner will read version information from the version.txt file.
However, this file needs to be included in a distributed tarball, so the
following line should be added to MANIFEST.in:

include version.txt

This isn’t necessary if setup.py will always be run from a git checkout,
but otherwise is essential for vcversioner to know what version to use.

The name version.txt also can be changed by specifying the version_file
parameter. For example:

from setuptools import setup

setup(
 # [...]
 setup_requires=['vcversioner'],
 vcversioner={
 'version_file': 'custom_version.txt',
 },
)

Non-hook usage

It’s not necessary to depend on vcversioner; while pip [https://pypi.python.org/pypi/pip] will take care of
dependencies automatically, sometimes having a self-contained project is
simpler. vcversioner is a single file which is easy to add to a project. Simply
copy the entire vcversioner.py file adjacent to the existing setup.py
file and update the usage slightly:

from setuptools import setup
import vcversioner

setup(
 # [...]
 version=vcversioner.find_version().version,
)

This is necessary because the vcversioner distutils hook won’t be
available.

Version modules

setup.py isn’t the only place that version information gets duplicated. By
generating a version module, the __init__.py file of a package can import
version information. For example, with a package named spam:

from setuptools import setup

setup(
 # [...]
 setup_requires=['vcversioner'],
 vcversioner={
 'version_module_paths': ['spam/_version.py'],
 },
)

This will generate a spam/_version.py file that defines __version__ and
__sha__. Then, in spam/__init__.py:

from spam._version import __version__, __sha__

Since this acts like (and is) a regular python module, changing
MANIFEST.in is not required.

Customizing git commands

vcversioner by default executes git describe --tags --long to get version
information. This command will output a string that describes the current
commit, using all tags (as opposed to just unannotated tags), and always output
the long format (1.0-0-gdeadbeef instead of just 1.0 if the current
commit is tagged).

However, sometimes this isn’t sufficient. If someone wanted to only use
annotated tags, the git command could be amended like so:

from setuptools import setup

setup(
 # [...]
 setup_requires=['vcversioner'],
 vcversioner={
 'git_args': ['git', 'describe', '--long'],
 },
)

The git_args parameter must always be a list of strings, which will not be
interpreted by the shell. This is the same as what subprocess.Popen
expects.

Development versions

vcversioner can also automatically make a version that corresponds to a commit
that isn’t itself tagged. Following PEP 386 [http://www.python.org/dev/peps/pep-0386/], this is done by adding a
.dev suffix to the version specified by a tag on an earlier commit. For
example, if the current commit is three revisions past the 1.0 tag, the
computed version will be 1.0.dev3.

This behavior can be disabled by setting the include_dev_version parameter
to False. In that case, the aforementioned untagged commit’s version would
be just 1.0.

Project roots

In order to prevent contamination from other git repositories, vcversioner in
the 1.x version series will only look in the project root directory for a git
repository. The project root defaults to the current working directory, which
is often the case when running setup.py. This can be changed by specifying the
root parameter. Someone concerned with being able to run setup.py from
directories other than the directory containing setup.py should determine the
project root from __file__ in setup.py:

from setuptools import setup
import os

setup(
 # [...]
 setup_requires=['vcversioner'],
 vcversioner={
 'root': os.path.dirname(os.path.abspath(__file__)),
 },
)

To get the same behavior in the 0.x version series, git_args can be set to
include the --git-dir flag:

from setuptools import setup

setup(
 # [...]
 setup_requires=['vcversioner'],
 vcversioner={
 git_args=['git', '--git-dir', '%(root)s/.git', 'describe',
 '--tags', '--long'],
 },
)

By default, version.txt is also read from the project root.

Sphinx documentation

Sphinx [http://sphinx-doc.org] documentation is yet another place where version numbers get
duplicated. Fortunately, since sphinx configuration is python code, vcversioner
can be used there too. Assuming vcversioner is installed system-wide, this is
quite easy. Since Sphinx is typically run with the current working directory as
<your project root>/docs, it’s necessary to tell vcversioner where the
project root is. Simply change your conf.py to include:

import vcversioner
version = release = vcversioner.find_version(root='..').version

This assumes that your project root is the parent directory of the current
working directory. A slightly longer version which is a little more robust
would be:

import vcversioner, os
version = release = vcversioner.find_version(
 root=os.path.dirname(os.path.dirname(os.path.abspath(__file__)))).version

This version is more robust because it finds the project root not relative to
the current working directory but instead relative to the conf.py file.

If vcversioner is bundled with your project instead of relying on it being
installed, you might have to add the following to your conf.py before
import vcversioner:

import sys, os
sys.path.insert(0, os.path.abspath('..'))

This line, or something with the same effect, is sometimes already present when
using the sphinx autodoc extension.

Read the Docs

Using vcversioner is even possible when building documentation on Read the
Docs [https://readthedocs.org/]. If vcversioner is bundled with your project, nothing further needs to
be done. Otherwise, you need to tell Read the Docs to install vcversioner
before it builds the documentation. This means using a requirements.txt
file.

If your project is already set up to install dependencies with a
requirements.txt file, add vcversioner to it. Otherwise, create a
requirements.txt file. Assuming your documentation is in a docs
subdirectory of the main project directory, create docs/requirements.txt
containing a vcversioner line.

Then, make the following changes to your project’s configuration: (Project
configuration is edited at e.g.
https://readthedocs.org/dashboard/vcversioner/edit/)

	Check the checkbox under Use virtualenv.

	If there was no requirements.txt previously, set the Requirements
file to the newly-created one, e.g. docs/requirements.txt.

vcversioner API reference

Simplify your python project versioning.

In-depth docs online: https://vcversioner.readthedocs.org/en/latest/
Code online: https://github.com/habnabit/vcversioner

	
vcversioner.find_version(include_dev_version=True, root=u'%(pwd)s', version_file=u'%(root)s/version.txt', version_module_paths=(), git_args=(u'git', u'--git-dir', u'%(root)s/.git', u'describe', u'--tags', u'--long'), Popen=<class 'subprocess.Popen'>)[source]

	Find an appropriate version number from version control.

It’s much more convenient to be able to use your version control system’s
tagging mechanism to derive a version number than to have to duplicate that
information all over the place. Currently, only git is supported.

The default behavior is to write out a version.txt file which contains
the git output, for systems where git isn’t installed or there is no .git
directory present. version.txt can (and probably should!) be packaged
in release tarballs by way of the MANIFEST.in file.

	Parameters:	
	include_dev_version – By default, if there are any commits after the
most recent tag (as reported by git), that
number will be included in the version number
as a .dev suffix. For example, if the most
recent tag is 1.0 and there have been three
commits after that tag, the version number will
be 1.0.dev3. This behavior can be disabled
by setting this parameter to False.

	root – The directory of the repository root. The default value is the
current working directory, since when running setup.py,
this is often (but not always) the same as the current working
directory. Standard substitutions are performed on this value.

	version_file – The name of the file where version information will be
saved. Reading and writing version files can be
disabled altogether by setting this parameter to
None. Standard substitutions are performed on this
value.

	version_module_paths – A list of python modules which will be
automatically generated containing
__version__ and __sha__ attributes.
For example, with package/_version.py as a
version module path, package/__init__.py
could do from package._version import
__version__, __sha__.

	git_args – The git command to run to get a version. By default, this
is git --git-dir %(root)s/.git describe --tags --long.
--git-dir is used to prevent contamination from git
repositories which aren’t the git repository of your
project. Specify this as a list of string arguments
including git, e.g. ['git', 'describe']. Standard
substitutions are performed on each value in the provided
list.

	Popen – Defaults to subprocess.Popen. This is for testing.

root, version_file, and git_args each support some substitutions:

	%(root)s

	The value provided for root. This is not available for the root
parameter itself.

	%(pwd)s

	The current working directory.

	
vcversioner.setup(dist, attr, value)[source]

	A hook for simplifying vcversioner use from distutils.

This hook, when installed properly, allows vcversioner to automatically run
when specifying a vcversioner argument to setup. For example:

from setuptools import setup

setup(
 setup_requires=['vcversioner'],
 vcversioner={},
)

The parameter to the vcversioner argument is a dict of keyword
arguments which find_version() will be called with.

 Copyright 2013, Aaron Gallagher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	vcversioner 1.13.0.0 documentation

 Python Module Index

 v

 			

 		
 v	

 	
 	
 vcversioner	

 Copyright 2013, Aaron Gallagher.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	
 modules |

 	vcversioner 1.13.0.0 documentation

Index

 F
 | S
 | V

F

 	

 	find_version() (in module vcversioner)

S

 	

 	setup() (in module vcversioner)

V

 	

 	vcversioner (module)

 Copyright 2013, Aaron Gallagher.
 Created using Sphinx 1.1.3.

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_modules/vcversioner.html

 Navigation

 		
 index

 		
 modules |

 		vcversioner 1.13.0.0 documentation »

 		Module code »

 Source code for vcversioner

Copyright (c) 2013, Aaron Gallagher <_@habnab.it>
#
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

"""Simplify your python project versioning.

In-depth docs online: https://vcversioner.readthedocs.org/en/latest/
Code online: https://github.com/habnabit/vcversioner

"""

from __future__ import print_function, unicode_literals

import collections
import os
import subprocess

Version = collections.namedtuple('Version', 'version commits sha')

_print = print
def print(*a, **kw):
 _print('vcversioner:', *a, **kw)

[docs]def find_version(include_dev_version=True, root='%(pwd)s',
 version_file='%(root)s/version.txt', version_module_paths=(),
 git_args=('git', '--git-dir', '%(root)s/.git', 'describe',
 '--tags', '--long'),
 Popen=subprocess.Popen):
 """Find an appropriate version number from version control.

 It's much more convenient to be able to use your version control system's
 tagging mechanism to derive a version number than to have to duplicate that
 information all over the place. Currently, only git is supported.

 The default behavior is to write out a ``version.txt`` file which contains
 the git output, for systems where git isn't installed or there is no .git
 directory present. ``version.txt`` can (and probably should!) be packaged
 in release tarballs by way of the ``MANIFEST.in`` file.

 :param include_dev_version: By default, if there are any commits after the
 most recent tag (as reported by git), that
 number will be included in the version number
 as a ``.dev`` suffix. For example, if the most
 recent tag is ``1.0`` and there have been three
 commits after that tag, the version number will
 be ``1.0.dev3``. This behavior can be disabled
 by setting this parameter to ``False``.

 :param root: The directory of the repository root. The default value is the
 current working directory, since when running ``setup.py``,
 this is often (but not always) the same as the current working
 directory. Standard substitutions are performed on this value.

 :param version_file: The name of the file where version information will be
 saved. Reading and writing version files can be
 disabled altogether by setting this parameter to
 ``None``. Standard substitutions are performed on this
 value.

 :param version_module_paths: A list of python modules which will be
 automatically generated containing
 ``__version__`` and ``__sha__`` attributes.
 For example, with ``package/_version.py`` as a
 version module path, ``package/__init__.py``
 could do ``from package._version import
 __version__, __sha__``.

 :param git_args: The git command to run to get a version. By default, this
 is ``git --git-dir %(root)s/.git describe --tags --long``.
 ``--git-dir`` is used to prevent contamination from git
 repositories which aren't the git repository of your
 project. Specify this as a list of string arguments
 including ``git``, e.g. ``['git', 'describe']``. Standard
 substitutions are performed on each value in the provided
 list.

 :param Popen: Defaults to ``subprocess.Popen``. This is for testing.

 root, *version_file*, and *git_args* each support some substitutions:

 ``%(root)s``
 The value provided for *root*. This is not available for the *root*
 parameter itself.

 ``%(pwd)s``
 The current working directory.

 """

 substitutions = {'pwd': os.getcwd()}
 substitutions['root'] = root % substitutions
 git_args = [arg % substitutions for arg in git_args]
 if version_file is not None:
 version_file %= substitutions

 # try to pull the version from git, or (perhaps) fall back on a
 # previously-saved version.
 try:
 proc = Popen(git_args, stdout=subprocess.PIPE)
 except OSError:
 raw_version = None
 else:
 raw_version = proc.communicate()[0].strip().decode()
 version_source = 'git'

 # git failed if the string is empty
 if not raw_version:
 if version_file is None:
 print('%r failed' % (git_args,))
 raise SystemExit(2)
 elif not os.path.exists(version_file):
 print("%r failed and %r isn't present." % (git_args, version_file))
 print("are you installing from a github tarball?")
 raise SystemExit(2)
 print("couldn't determine version from git; using %r" % version_file)
 with open(version_file, 'r') as infile:
 raw_version = infile.read()
 version_source = repr(version_file)

 # try to parse the version into something usable.
 try:
 tag_version, commits, sha = raw_version.rsplit('-', 2)
 except ValueError:
 print("%r (from %s) couldn't be parsed into a version" % (
 raw_version, version_source))
 raise SystemExit(2)

 if version_file is not None:
 with open(version_file, 'w') as outfile:
 outfile.write(raw_version)

 if commits == '0' or not include_dev_version:
 version = tag_version
 else:
 version = '%s.dev%s' % (tag_version, commits)

 for path in version_module_paths:
 with open(path, 'w') as outfile:
 outfile.write("""
This file is automatically generated by setup.py.
__version__ = %s
__sha__ = %s
""" % (repr(version).lstrip('u'), repr(sha).lstrip('u')))

 return Version(version, commits, sha)

[docs]def setup(dist, attr, value):
 """A hook for simplifying ``vcversioner`` use from distutils.

 This hook, when installed properly, allows vcversioner to automatically run
 when specifying a ``vcversioner`` argument to ``setup``. For example::

 from setuptools import setup

 setup(
 setup_requires=['vcversioner'],
 vcversioner={},
)

 The parameter to the ``vcversioner`` argument is a dict of keyword
 arguments which :func:`find_version` will be called with.

 """

 dist.version = dist.metadata.version = find_version(**value).version

 © Copyright 2013, Aaron Gallagher.
 Created using Sphinx 1.1.3.

search.html

 Navigation

 		
 index

 		
 modules |

 		vcversioner 1.13.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Aaron Gallagher.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		vcversioner 1.13.0.0 documentation »

 All modules for which code is available

		vcversioner

 © Copyright 2013, Aaron Gallagher.
 Created using Sphinx 1.1.3.

