
vcversioner Documentation
Release 1.13.0.0

Aaron Gallagher

November 07, 2013

Contents

i

ii

vcversioner Documentation, Release 1.13.0.0

The code is available on github: https://github.com/habnabit/vcversioner

Elevator pitch: you can write a setup.py with no version information specified, and vcversioner will find a recent,
properly-formatted git tag and extract a version from it.

It’s much more convenient to be able to use your version control system’s tagging mechanism to derive a version
number than to have to duplicate that information all over the place. I eventually ended up copy-pasting the same code
into a couple different setup.py files just to avoid duplicating version information. But, copy-pasting is dumb and
unit testing setup.py files is hard. This code got factored out into vcversioner.

Contents 1

https://github.com/habnabit/vcversioner
http://en.wikipedia.org/wiki/Elevator_pitch

vcversioner Documentation, Release 1.13.0.0

2 Contents

CHAPTER 1

Basic usage

vcversioner installs itself as a setuptools hook, which makes its use exceedingly simple:

from setuptools import setup

setup(
[...]
setup_requires=[’vcversioner’],
vcversioner={},

)

The presence of a vcversioner argument automagically activates vcversioner and updates the project’s version.
The parameter to the vcversioner argument can also be a dict of keyword arguments which find_version()
will be called with.

To allow tarballs to be distributed without requiring a .git directory, vcversioner will also write out a file named (by
default) version.txt. Then, if there is no git or git is unable to find any version information, vcversioner will read
version information from the version.txt file. However, this file needs to be included in a distributed tarball, so
the following line should be added to MANIFEST.in:

include version.txt

This isn’t necessary if setup.py will always be run from a git checkout, but otherwise is essential for vcversioner
to know what version to use.

The name version.txt also can be changed by specifying the version_file parameter. For example:

from setuptools import setup

setup(
[...]
setup_requires=[’vcversioner’],
vcversioner={

’version_file’: ’custom_version.txt’,
},

)

3

vcversioner Documentation, Release 1.13.0.0

4 Chapter 1. Basic usage

CHAPTER 2

Non-hook usage

It’s not necessary to depend on vcversioner; while pip will take care of dependencies automatically, sometimes having
a self-contained project is simpler. vcversioner is a single file which is easy to add to a project. Simply copy the entire
vcversioner.py file adjacent to the existing setup.py file and update the usage slightly:

from setuptools import setup
import vcversioner

setup(
[...]
version=vcversioner.find_version().version,

)

This is necessary because the vcversioner distutils hook won’t be available.

5

https://pypi.python.org/pypi/pip

vcversioner Documentation, Release 1.13.0.0

6 Chapter 2. Non-hook usage

CHAPTER 3

Version modules

setup.py isn’t the only place that version information gets duplicated. By generating a version module, the
__init__.py file of a package can import version information. For example, with a package named spam:

from setuptools import setup

setup(
[...]
setup_requires=[’vcversioner’],
vcversioner={

’version_module_paths’: [’spam/_version.py’],
},

)

This will generate a spam/_version.py file that defines __version__ and __sha__. Then, in
spam/__init__.py:

from spam._version import __version__, __sha__

Since this acts like (and is) a regular python module, changing MANIFEST.in is not required.

7

vcversioner Documentation, Release 1.13.0.0

8 Chapter 3. Version modules

CHAPTER 4

Customizing git commands

vcversioner by default executes git describe --tags --long to get version information. This command
will output a string that describes the current commit, using all tags (as opposed to just unannotated tags), and always
output the long format (1.0-0-gdeadbeef instead of just 1.0 if the current commit is tagged).

However, sometimes this isn’t sufficient. If someone wanted to only use annotated tags, the git command could be
amended like so:

from setuptools import setup

setup(
[...]
setup_requires=[’vcversioner’],
vcversioner={

’git_args’: [’git’, ’describe’, ’--long’],
},

)

The git_args parameter must always be a list of strings, which will not be interpreted by the shell. This is the same
as what subprocess.Popen expects.

9

vcversioner Documentation, Release 1.13.0.0

10 Chapter 4. Customizing git commands

CHAPTER 5

Development versions

vcversioner can also automatically make a version that corresponds to a commit that isn’t itself tagged. Following
PEP 386, this is done by adding a .dev suffix to the version specified by a tag on an earlier commit. For example, if
the current commit is three revisions past the 1.0 tag, the computed version will be 1.0.dev3.

This behavior can be disabled by setting the include_dev_version parameter to False. In that case, the
aforementioned untagged commit’s version would be just 1.0.

11

http://www.python.org/dev/peps/pep-0386/

vcversioner Documentation, Release 1.13.0.0

12 Chapter 5. Development versions

CHAPTER 6

Project roots

In order to prevent contamination from other git repositories, vcversioner in the 1.x version series will only look in
the project root directory for a git repository. The project root defaults to the current working directory, which is often
the case when running setup.py. This can be changed by specifying the root parameter. Someone concerned with
being able to run setup.py from directories other than the directory containing setup.py should determine the project
root from __file__ in setup.py:

from setuptools import setup
import os

setup(
[...]
setup_requires=[’vcversioner’],
vcversioner={

’root’: os.path.dirname(os.path.abspath(__file__)),
},

)

To get the same behavior in the 0.x version series, git_args can be set to include the --git-dir flag:

from setuptools import setup

setup(
[...]
setup_requires=[’vcversioner’],
vcversioner={

git_args=[’git’, ’--git-dir’, ’%(root)s/.git’, ’describe’,
’--tags’, ’--long’],

},
)

By default, version.txt is also read from the project root.

13

vcversioner Documentation, Release 1.13.0.0

14 Chapter 6. Project roots

CHAPTER 7

Sphinx documentation

Sphinx documentation is yet another place where version numbers get duplicated. Fortunately, since sphinx config-
uration is python code, vcversioner can be used there too. Assuming vcversioner is installed system-wide, this is
quite easy. Since Sphinx is typically run with the current working directory as <your project root>/docs,
it’s necessary to tell vcversioner where the project root is. Simply change your conf.py to include:

import vcversioner
version = release = vcversioner.find_version(root=’..’).version

This assumes that your project root is the parent directory of the current working directory. A slightly longer version
which is a little more robust would be:

import vcversioner, os
version = release = vcversioner.find_version(

root=os.path.dirname(os.path.dirname(os.path.abspath(__file__)))).version

This version is more robust because it finds the project root not relative to the current working directory but instead
relative to the conf.py file.

If vcversioner is bundled with your project instead of relying on it being installed, you might have to add the following
to your conf.py before import vcversioner:

import sys, os
sys.path.insert(0, os.path.abspath(’..’))

This line, or something with the same effect, is sometimes already present when using the sphinx autodoc extension.

7.1 Read the Docs

Using vcversioner is even possible when building documentation on Read the Docs. If vcversioner is bundled with
your project, nothing further needs to be done. Otherwise, you need to tell Read the Docs to install vcversioner before
it builds the documentation. This means using a requirements.txt file.

If your project is already set up to install dependencies with a requirements.txt file, add vcversioner to it.
Otherwise, create a requirements.txt file. Assuming your documentation is in a docs subdirectory of the main
project directory, create docs/requirements.txt containing a vcversioner line.

Then, make the following changes to your project’s configuration: (Project configuration is edited at e.g.
https://readthedocs.org/dashboard/vcversioner/edit/)

15

http://sphinx-doc.org
https://readthedocs.org/
https://readthedocs.org/dashboard/vcversioner/edit/

vcversioner Documentation, Release 1.13.0.0

• Check the checkbox under Use virtualenv.

• If there was no requirements.txt previously, set the Requirements file to the newly-created one, e.g.
docs/requirements.txt.

16 Chapter 7. Sphinx documentation

CHAPTER 8

vcversioner API reference

Simplify your python project versioning.

In-depth docs online: https://vcversioner.readthedocs.org/en/latest/ Code online:
https://github.com/habnabit/vcversioner

vcversioner.find_version(include_dev_version=True, root=u’%(pwd)s’, ver-
sion_file=u’%(root)s/version.txt’, version_module_paths=(),
git_args=(u’git’, u’–git-dir’, u’%(root)s/.git’, u’describe’, u’–tags’,
u’–long’), Popen=<class ‘subprocess.Popen’>)

Find an appropriate version number from version control.

It’s much more convenient to be able to use your version control system’s tagging mechanism to derive a version
number than to have to duplicate that information all over the place. Currently, only git is supported.

The default behavior is to write out a version.txt file which contains the git output, for systems where git
isn’t installed or there is no .git directory present. version.txt can (and probably should!) be packaged in
release tarballs by way of the MANIFEST.in file.

Parameters

• include_dev_version – By default, if there are any commits after the most recent tag (as
reported by git), that number will be included in the version number as a .dev suffix. For
example, if the most recent tag is 1.0 and there have been three commits after that tag, the
version number will be 1.0.dev3. This behavior can be disabled by setting this parameter
to False.

• root – The directory of the repository root. The default value is the current working direc-
tory, since when running setup.py, this is often (but not always) the same as the current
working directory. Standard substitutions are performed on this value.

• version_file – The name of the file where version information will be saved. Reading and
writing version files can be disabled altogether by setting this parameter to None. Standard
substitutions are performed on this value.

• version_module_paths – A list of python modules which will be automatically
generated containing __version__ and __sha__ attributes. For example, with
package/_version.py as a version module path, package/__init__.py could
do from package._version import __version__, __sha__.

• git_args – The git command to run to get a version. By default, this is git --git-dir
%(root)s/.git describe --tags --long. --git-dir is used to prevent con-

17

https://vcversioner.readthedocs.org/en/latest/
https://github.com/habnabit/vcversioner

vcversioner Documentation, Release 1.13.0.0

tamination from git repositories which aren’t the git repository of your project. Specify this
as a list of string arguments including git, e.g. [’git’, ’describe’]. Standard
substitutions are performed on each value in the provided list.

• Popen – Defaults to subprocess.Popen. This is for testing.

root, version_file, and git_args each support some substitutions:

%(root)s The value provided for root. This is not available for the root parameter itself.

%(pwd)s The current working directory.

vcversioner.setup(dist, attr, value)
A hook for simplifying vcversioner use from distutils.

This hook, when installed properly, allows vcversioner to automatically run when specifying a vcversioner
argument to setup. For example:

from setuptools import setup

setup(
setup_requires=[’vcversioner’],
vcversioner={},

)

The parameter to the vcversioner argument is a dict of keyword arguments which find_version() will
be called with.

18 Chapter 8. vcversioner API reference

Python Module Index

v
vcversioner, ??

19

